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1. INTRODUCTION AND MAIN RESULTS

This paper deals with convergence of Gaussian quadrature formulas. Let
o be a nondecreasing function on [ —1, 1] with infinitely many points of
increase such that all moments of dx are finite. We call dx a measure. As
usual, for Ne N let P, denote the set of polynomials of degree at most N.
In what follows we denote by c, ¢y, ... positive constants independent of
variables and indices, unless otherwise indicated; their value may be different
at different occurrences, even in subsequent formulas.

Let ne N. Assume that m,, >0, m, . , >0, my, >0, 1 <k <n, are integers,
which satisfy M =maxXg <<, 1. nen M < 0. Put N, =" 0 m,, —1 and

p _{1, mg, =0, _{n, Myi1,,="0,
0— 1=
0, mgy,>0, n+1, m,,;,>0.

Given a system of nodes

1 =X0,>X1,>X0,> -+ >X,,> X, 1. ,= —1 (L.1)
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denote by A, 0< j<m;— 1, no <k <n,, the fundamental polynomials for
the Hermite interpolation, ie., 4, € Py satisfy

A},f)(xq)zéjp Okg» p=0,1,.,m,—1,
j=0,1,..,m_—1, ¢, k=ng,nog+1, .., n.
The Hermite interpolation of fe C¥~![ —1, 1] is given by
my —1
= 3T O A,
k=ny, j=0

from which we can obtain the generalized quadrature formula

[ rmed= % def (12)

- k=ny, j=0

exact for all fe Py , where

n
= 1—[ X —xp)"
and

]k_j Au(x) o (x) da(x),  j=0.1,..my—1, k=ng.ng+1, ..n,.
(1.3)

Particularly interesting is the case when the x,, happen to be the solution
Xn(do) of the extremal problem,

1 !
J [T (x—x(do))™| dofx)
-1 k=ng
1 ny
- min j T (x— )™ da(x). (1.4)
l=t>0> >0, =11 [ L,

According to [6, Theorem 3] the solution of the extremal problem (1.4)
admits the generalized Gaussian quadrature formula

J flx X) do(x) = Z Z} (do) fO(xi(do)), (1.5)

k=nyj=0
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which is exact for all fePy , where

* mk—z, 1 <k<n,
mk = .
my— 1, otherwise

and Zy(dw) : (do) are called the Cotes numbers.

Let the sequeﬁge of integers {r,} satisfy
mi, =1, =20,  ny<k<n;, neN.
Put
r= max T'ken (L.6)
ny<k<n;,neN
and

O,(do; f) = nZ Zi (do) fO(xp(dn)),  feCT—1,11. (1.7)

k=ny j=0

The main aim of this paper is to give conditions of convergence and rate
of convergence for the truncated Gaussian quadrature formula Q,(dw; f')
under the assumption that all m,,,, 1 <k <n, neN, are even. Of course, in
this case ,=1, a.e.

THEOREM 1. Assume that all my,, 1 <k <n, neN, are even. Let do be
a measure on [ —1, 1] such that o€ C[ —1, 1]. Then

lim O, (dx; f)_j f(x)du(x), feCTT—1,1]. (1.8)

n— oo

In particular,

lim Y Jou(dn) () =[S, feCL-11] (19)

n— oo _
k=n,
0

and

lim Z rfﬂ (do) [ X)) =0,  feCT—1,1]. (1.10)

n—o p_ ny j=1

This result is very general; the special case when my=m, ;=0,
m;= --- =m, =2 can be found in [7, Theorem 15.2.3, p. 342].
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As usual, denote by w(f; -) the modulus of continuity of f and

1— 2\1/2 1
Ay ==X 1
n n

and d,, =

Let dno,n=|xn0,n_xn0+1,n|s dn1n=|xn1’n—xn171,n|,
_‘xk+l,n|}’ n0+1<k<n1—1

maX{ |xkn — X — 1,n |5 |xkn
The following general results concern the rate of convergence for Q,(do; f

THEOREM 2. Assume that all my,, 1 <k<n, neN, are even. Let du be

a measure on [ —1, 1] and fe C'[ —1,1]. If
(1.11)

Fien =min{r, mg,}, no<k<n, neN,
then
" 1 "
‘Qn(da; N=[" fix) datx)
mp,
<en~"w( 7 1/n) Z Aogen( dot) Z (X gn(d)) 7 (1.12)
k:n0 j=
THEOREM 3. Assume that all my,,, 1 <k <n, ne N, are even. Let x;,(dx)
=cos Oy, k=0,1,..,n+1, and fe C'[ —1,1]. If (1.11) holds and
c
0k+1,n_0kn<73 k=09 1,...,7’!, (113)
n
then

<enTo(f7; 1/n). (1.14)

0, f) [ fx) dat

In the next section some auxiliary lemmas are established and in the last

section the proofs of the theorems are given.

2. AUXILIARY LEMMAS

First we state some known results needed later.

LEMMA A [3]. For every fe CP[ —1,1] (p=0) there exists a polyno-

mial P, € P, such that for all xe[ —1,1]
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00 = PR < 4,(x)P T o fP5 4,x) 0<j<p, (21
PP S e 4,(x)P T o f P 4,(x)), j>p. (22)

Lemma B [4, Theorem 1]. Assume that all my,, 1 <k<n, neN, are
even. We have the generalized Markov—Stieltjes inequality

n+1 X (dot)

Z oren(dot) <J

k=i+1

n+l
do(x) < z Aoin(det), I<ig<n.  (23)

To give an explicit formula for A, 0 < j<m;—1, no<k<ny, set

ny Y—x m,

L= T < q> ’ (2.4)
q=ny, q#k xk_xq
1

bvk=7| [Lk(-x)_l]_()cV):xka VZO’ 1’ b mk— 1’ (25)

V!
k—J—1

Bjk(x): Z bo(x — xp)". (2.6)

Then we have [ 5, (1.4)]

1 )
Ajk(x) == (x—xz)’ Bjk(x) L;(x),
j!
j=0, 1,..., mk_l, k=n0, n0+1,...,n1. (27)

The following result improves [5, Theorem 1] given by the author and
plays a crucial role in this paper.

LemMa 1. Assume that mo=m, . 1=0 and 1=xy=2x;> - >Xx,>
X,1=—1. Let By be defined by (2.6). If m;—j is odd and 0< j<i<
my — 1 then

_ i—j
TR T Bux)l, xeR, 1<k<n (2.8)

Bu(x)=c

Ck
if jis even and 0 <i< j<m,—1, then

bp=cdi |byl,  1<k<n. (2.9)



YING GUANG SHI

284
Moreover,

x—xq|"/ .
B;(x)=c 7 B,;(x)=0, x<x,, 0<j<ig<m;—1, (2.10)

1
i

B, (x)=>c “ B,(x)=0, x>=x, 0<j<i<m,—1, (2.11)
and

b= cd b, >0, 0<i<j<m,—1. '

Proof. Inequalities (2.8) and (2.9) are already given in [5, Theorem 1].
Meanwhile (2.8) implies (2.10) if m; — j is odd and (2.11) if m, — j is odd.
So it is enough to show (2.10) for m; — j being even and (2.11) for m, — j
being even. To this end, following the idea of [5], put

-1
X —X, k
xk_x) . p#k

LE() = Ly(x) (

Thus
v=l,

1
b;kk:*, [Llf(x)_l]gc‘}):xk:bvk+7bv71,k>
v! Xi— X,

from which by (2.6) it follows that

e 1 X —Xp
Bix)= Y bRMx—x) =Bux)+- S B 4x). (213)
v=0 k P

But by (2.8) and the inequalities given in [5, (2.9)]
v=0,1,..,m—1; b,>0, v=0,1,...,m,—1,

(=1)"b, >0,
(2.14)

we have

Bji(x)= B} 1 «(x) + brtkfjf W(x—x)™ /=1 >0,

if k=1 and x<x; or if k=n and x> x,. This, by means of (2.13) with
k=1and p=2 or with k=n and p=n—1, gives

X —X,;

d, Bj+1,1(x)>07 X <X

B.

Jj1

(x)=c
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and

Bj+l,n(x)>0: x}xn,

respectively. Applying these inequalities and (2.8) alternatively several
times we can get (2.10) and (2.11).

Comparing the leading coefficients of both the sides of (2.10) and (2.11)
as well as using (2.14) yields (2.12). |

Using (2.8), (2.10), and (2.11) we can get the important inequalities
for Z;(dx).

LEMMA 2. If my,, —j is even and 0 < j<i<m},, then
|Ziten(do) | < €O (Xpn(dox) +0) dig, 7 Fjen( ), 1<k<n. (2.15)
If my,>0 then
0<(—1) Ai,(do) <(—1)7 ediy, 7 hj0n(d), 0<j<i<mg,; (2.16)
if m, 1 ,>0 then

0<0,(—1+0) 2,41, ald0) <co,(—140)di7 2 0, aldo),

n+1l,n

0<j<i<mii, . (2.17)

Proof. By (1.3), (2.6), and (2.7) for 0 <p <m

1 !
hpe=o | 6= x0)” Bulx) Lifx) 0,(x) d(x)
1 !
=] 0 By 40 L) 0,(3) da()
1 ! my;—1
t b g | (=X)L (x) 0,(x) dn(x).
p: -1

By (1.5) the last term in the above relation is zero. Thus

B
!

pk

1
J_l (x =x%)? B, 11, (X) Li(x) 0,(x) dox(x). (2.18)
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It is easy to see that

n

o xp+0)=sgn [ (xp—x,)"
q=1,9#k

Since m, — j is even, applying (2.18) and (2.8) we have

0) ! )
o+ 0) = LD [ () By () L) 0,30 )

TR
1

1
=1 Bl I =) L) da)

1 )
1 ) B i) L) 0,(x) )

11J_1

=cd?7" | Ayl

>cd)!

This proves (2.15).
To prove (2.16) and (2.17) we need [1, Lemma 2], which says that if
mgy >0 then

(=1)? Apo(da) >0,  O<p<m§
and if m,,, ;>0 then
O-n(_1+0)jvp,n+l(da)>09 0<p<m;1k+l

Using these relations as well as (2.10) and (2.11) we can deduce (2.16) and
(2.17) in a similar way. |
From (2.3) it is easy to see that if all m,,,, 1 <k <n, neN, are even then
Xp 1 (do)
Aoi(do) < do(x)
Fi1 () (2.19)
(x—l(da)::1>xn+2(d(x'):: 71)’ nogkgnl'

As an immediate consequence of Lemma 2 and the relation (2.19) we state

COROLLARY 1. Assume that all my,,, 1 <k <n, neN, are even. We have
the inequality
Xp_1, n(do)

o )] < o) < el | da(x),
K41, n(dlx)

0<j<mf,, no<k<n,. (2.20)



GAUSSIAN QUADRATURE FORMULAS 287

LemMma 3. Assume that all my,,, | <k <n, ne N, are even. For an arbitrary
measure do the relation

tim Y Y dudn) fOxpldn) =[S dax)  (221)

holds for all f € C™[ —1, 1], where m =max, <x<n, nen Min-

Proof. Since (1.5) is exact for every polynomial feP, , by the well
known Banach theorem it suffices to show

ny mi
Y Y gl <c<oo. (2.22)

k=ny j=0

This is indeed the case, because by (2.20) and (1.5)

o mi
> Z |l <c Z Y dihge <2™(m+1) Z Jox
k=ny j=0 k=ny j=0 k=ny

1
=c2’"(m+1)f dx(x). 1
1

LEMMA 4. Assume that all my,, 1 <k<n, neN, are even. Let do be a
measure on [ —1, 1]. Ifff; dou(x)>0 ([a,b] <[ —1, 1]), then for sufficiently
large n the interval [a, b] contains at least one zero x,(do).

Proof. Suppose to the contrary that there would exist a subsequence
{n;} 72,5, n; = oo, such that the interval [a, b] contains no zero x; , (d).
Choose fe C™[ —1, 1] so that

>0, x€(a,b),

f(x){_o, xé(a,b).

Denote by n;, and n;; the corresponding numbers n, and n; for n=n,,
respectively. Then by Lemma 3

a contradiction. i

Remark. This result extends Theorem 6.1.1 in [7, p.107] concerning
orthogonal polynomials.

The following result is an analogue for orthogonal polynomials [ 2, pp. 63-64].
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LEMMA 5. Assume that all my,, 1 <k<n, neN, are even. Then the
relation

Iim  max Ag,(do)=0 (2.23)

n— oo noskSnl

holds if and only if
aeC[—1,1]. (2.24)

Proof. Assume that (2.23) is true. Let ye (—1, 1), say, y € (Xg 4 1, n> X —1.0)>
1 <k <n. Then by (2.3)

Xk—1n
bi 1 Ly Lp—
dO(()C) <)“0,k+1,n +/10,k,n + /“O,k—l,rn /“O,no—l,n '_}“O, n+1,n _0

Xk+1,n

Thus

(¥ +0) —a(y —=0) Sa(xg_1,0) = Xp11,0)

Shok+tnt Ao rnt 2ok—1,n >0, n— co.

This proves continuity of a(x) at x = y. Similarly we can prove continuity
of a(x) at x=—1 and x=1.

Conversely, suppose that (2.24) holds. Let Ao, =max,, <i<n, Aokn- We
may assume, passing to a subsequence if necessary, that as n — oo

Aoin =2 Xy = Vs v=i—1,ii+1.

Then by (2.19)

Yi—1
A< f da(x).
Yig1
It suffices to show jy ! do(x) =0. Suppose not and let jy -1 do(x) > 0. Then
either fy ' da(x)>0 or jy i-1 do(x) >0 would occur. Assume without loss of
generahty that the first 1nequa11ty occurs. Then jy =" ,da(x)>0 holds for

some ¢ > 0. Meanwhile by definition each interval (x, +1.n> Xiy) CONtains no
710 X;,. So for n large enough the interval [ y; ; +¢, y;—¢] contains no
Zero Xy,, contradicting Lemma 4. |

LEMMA 6. Assume that all my,, 1 <k<n, neN, are even. Let do be a
measure on [ —1, 1] such that « € C[ —1, 1]. Then

mpg,

im Y Y [Aalda)] =0. (2.25)

n— oo k=ny j=1
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Proof. By virtue of (2.20) and (2.23)

Z Zl al<c Z Zdio,cgc[ max Ao ] z Zd

k=ny j=1 k=ny j=1 ny<sk<n k=ny j=1

m ny
<27 max gl Y, Y dp
=1 k

ng<k<n

=
<em2™ T max Ay ]—0,
ny<k<ny

=n

asn— oo. |

LEmMa 7. Let xp,=cos 0y, k=0,1,...,n+1, neN, be given in (1.1). If
(1.13) is valid then

| X = X 1,0l SCA,(X5), i=kk+1, 0<k<n, neN (2.26)
and
d, <c4,(Xi), O0<k<n+1, neN. (2.27)

Proof. Let i=k, k+1. According to the mean value theorem for the
derivatives by (1.13) we have that for some 6* € (0, 0, ;)

%% — X 41| = |cos O — €08 Oy 1| = [(Or 4.y — 0y) sin 07|
=[(0k 41— 0x) sin(0; + 0* — 0,)|
= (01— 0i)[sin 0, cos(0* — 0,) + cos 0, sin(0* — 0,) ]|

1
< (04,1 —0,)[sin 0,+ |sin(0* —0,)|] <% <sin 9,.+n>.

Hence (2.26) follows. Inequality (2.27) directly follows from (2.26). ||

3. PROOFS OF THEOREMS

3.1. Proof of Theorem 1. By (2.21) and (2.25)

lim Q,(dw; f)= hm { Z z A [ (x) — Z z A [ (xz)

n—© k=ny j=0 k=ny j=r,+1
1
= [ f0) datx)
—1

Equations (1.9) and (1.10) are direct consequences of (1.8). |
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3.2. Proof of Theorem 2. Let P, eP, satisty (2.1) and (2.2) with p=r.
Clearly

1 nomg
|| Puxydax)= 3 Y 2P

- k=ny j=0
mie

SO AP+ Y S APy,

k=ny j=r+1

Hence

Qs )= S i)

*
ny my

=‘ [ 1P — 101 da(x) 4 Ot [~ P = X T PP

k=ny j=r+1

< U11 [f(x)—P,(x)] du(x)| +|Q,(dox; f—P,)|

n mit
+H Y X AwPPx)

k=ny j=r+1

::SI+S2+S3.

By (2.1)

Si<e | AV o(f: 4,2)) da(x) < en (£ Un).

-1

Applying (2.1) and (2.20)

n
Sa< Y Y gl 1 P(x) = PP

k=ny j<r

n
<en~o(f51n) Y Aee Y, d A,(xp)

k=n, J<r

By means of (2.2) and (2.20)

n mj¢
Sy<cen~o(f7; 1/n) Yo e Y, A d(xp)

k=n, Jj=r+1

Substituting S,, S,, and S5 into (3.1), we get (1.12). ||
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3.3. Proof of Theorem 3. Recalling

21: /10k=J ld“(x),

k=ng -

(1.4) follows from (1.12) and (2.27). ||
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